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Abstract

We consider the problem of model selection and accounting for model uncertainty
in high�dimensional contingency tables� motivated by expert system applications� The
approach most used currently is a stepwise strategy guided by tests based on approxi�
mate asymptotic P �values leading to the selection of a single model� inference is then
conditional on the selected model� The sampling properties of such a strategy are
complex� and the failure to take account of model uncertainty leads to underestima�
tion of uncertainty about quantities of interest� In principle� a panacea is provided
by the standard Bayesian formalism which averages the posterior distributions of the
quantity of interest under each of the models� weighted by their posterior model prob�
abilities� Furthermore� this approach is optimal in the sense of maximising predictive
ability� However� this has not been used in practice because computing the posterior
model probabilities is hard and the number of models is very large �often greater than
����	�

We argue that the standard Bayesian formalism is unsatisfactory and we propose
an alternative Bayesian approach that� we contend� takes full account of the true
model uncertainty by averaging over a much smaller set of models� An e
cient search
algorithm is developed for �nding these models� We consider two classes of graphical
models that arise in expert systems� the recursive causal models and the decomposable
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log�linear models� For each of these� we develop e
cient ways of computing exact
Bayes factors and hence posterior model probabilities� For the decomposable log�
linear models� this is based on properties of chordal graphs and hyper�Markov prior
distributions and the resultant calculations can be carried out locally� The end product
is an overall strategy for model selection and accounting for model uncertainty that
searches e
ciently through the very large classes of models involved�

Three examples are given� The �rst two concern data sets which have been analysed
by several authors in the context of model selection� The third addresses a urological
diagnostic problem� In each example� our model averaging approach provides better
out�of�sample predictive performance than any single model which might reasonably
have been selected�

KEYWORDS� Chordal graph� Contingency table� Decomposable log�linear model� Expert
system� Hyper�Markov distribution� Recursive causal model�
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� Introduction

Fruitful approaches to inference in high�dimensional contingency tables all involve choosing

a broad class of models to be considered and then comparing them on the basis of how well

they predict the data� Typically� the model classes are huge and inference in the presence of

the many competing models is not easy�

Here we consider two classes of graphical models� the recursive causal models of Kiiveri

et al� ����� and the decomposable log�linear models introduced by Goodman ���	�� and

Haberman ���	�� This work is motivated by applications in expert systems which use a

belief network to represent knowledge and perform inference �Lauritzen and Spiegelhalter�

������ These are the two model classes that arise in such applications� Potentially the most

important advantage of constructing expert systems in this fashion is the system�s ability

to modify itself as data becomes available� In a series of recent papers� Spiegelhalter and

Lauritzen �����a�����b�� Dawid and Lauritzen ����
� and Spiegelhalter and Cowell ������

have addressed the issue of updating the quantitative layer of such models� Building on this

work� we address the issue of updating the qualitative layer�how can the graphical structure

itself be updated as data becomes available�

Currently� the most used approach to model selection in contingency tables is a stepwise

one� adapted from stepwise regression by Goodman ���	��� see also Bishop� Fienberg and

Holland ���	�� Section �� and Chapter ��� This consists of sequentially adding and deleting

terms on the basis of approximate asymptotic likelihood ratio tests� leading to the selection

of a single model� Inference about the quantities of interest is then made conditionally on

the selected model�

There are several di�culties with this approach� The sampling properties of the overall

strategy are complex because it involves multiple tests and� at least implicitly� the compar�

ison of non�nested models �Fenech and Westfall� ������ The use of P �values themselves is

controversial� even when there are only two models to be compared� because of the so�called

�con�ict between P �values and evidence� discussed by Berger and Sellke ����	� and Berger

and Delampady ����	�� One aspect of this is that tests based on P �values tend to reject

even apparently satisfactory models when the sample size is large� a dramatic example of

this was discussed by Raftery �����b�� On the other hand� when the sample size is small

and the table sparse� the asymptotic approximations on which the P �values are based tend

to break down�

Perhaps most fundamentally� conditioning on a single selected model ignores model un�
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certainty and so leads to underestimation of the uncertainty about the quantities of interest�

This underestimation can be large� as was shown by Regal and Hook ������ in the contin�

gency table context and by Miller ����� in the regression context� One bad consequence is

that it can lead to decisions that are too risky �Hodges� ���	��

In principle� the standard Bayesian formalism provides a panacea for all these di�culties�

If � is the quantity of interest� such as a parameter� a future observation� or the utility of a

course of action� then its posterior distribution given data D is

pr�� j D� �
KX
k��

pr�� jMk�D�pr�Mk j D�� ���

This is an average of the posterior distributions under each of the models� weighted by their

posterior model probabilities� In equation ���� M�� � � � �MK are the models considered and

pr�Mk j D� �
pr�D jMk�pr�Mk�PK
��� pr�D jM��pr�M��

� ���

where

pr�D jMk� �
Z

pr�D j �k�Mk�pr��k jMk�d�k �
�

is the marginal likelihood of modelMk� �k is the �vector� parameter of Mk� pr��k jMk� is the

prior distribution of �k� pr�D j �k�Mk� is the likelihood� and pr�Mk� is the prior probability

of Mk�

Furthermore� averaging over all the models in this fashion provides better predictive

ability� as measured by a logarithmic scoring rule� than using any single model Mj�

� E

�
log

�
KX
k��

pr�� jMk�D�pr�Mk j D�

��
� �E �logfpr�� jMj�D�g� �j � �� � � � �K��

��

where � is the observable to be predicted and the expectation is with respect to
PK

k�� pr�� j

Mk�D�pr�Mk j D�� This follows from the non�negativity of the Kullback�Leibler information

divergence� The logarithmic scoring rule was suggested by Good ������ and assigns to each

event A which occurs a score of � logfpr�A�g� See Dawid ������ for further discussion and

Kass and Raftery ����
� for a review of the general approach�

Cooper and Herskovits ������ present this approach in the context of recursive causal

models� However� the approach in general has not been adopted in practice� This appears to

be because �a� the posterior model probabilities pr�Mk j D� are hard to compute since they

involve the very high�dimensional integrals in equation �
�� and �b� the number of models in

the sum in equation ��� can be huge� For example� with just �� variables �small by expert
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system standards� there are approximately  � ���� recursive causal models and � � ����

decomposable models�

One might hope that most of the posterior probability would be accounted for by a

small number of models so that the sum in equation ��� would be well approximated by

a small number of terms� Unfortunately� this is not typically the case because� although

a small number of models do have much higher posterior probabilities than all the others�

the very many models with small posterior probabilities contribute substantially to the sum�

For example� Moulton ������ reported a regression example with ��� � ��� models where

about ��� models were needed to account for ��� of the posterior probability�

We argue that the standard Bayesian formalism of equation ��� is �awed� Adopting

standard methods of scienti�c investigation� we contend that accounting for the true model

uncertainty involves averaging over a much smaller set of models� We present simple and

e�cient ways of computing the exact posterior model probabilities for the two model classes

considered� Our approach is to take advantage of the graphical structure to calculate the

required probabilities very quickly� while representing prior opinion in an easily elicitable

form� We also describe an e�cient algorithm for searching the very large model space�

Putting all this together gives us a simple and computationally e�cient way of selecting

the best models and accounting for model uncertainty in recursive causal models and decom�

posable log�linear models� To demonstrate the generality of our approach� our discussion will

be in the context of conventional statistical model selection rather than expert systems� In

Section � we describe the principles underlying our approach to model selection� In Section


 we apply those principles to the recursive causal models� while in Section  we consider

the decomposable models�

� Model Selection Strategy

��� General Principles and Occam�s Razor

We argue that equation ��� does not accurately represent model uncertainty� Science is an

iterative process in which competing models of reality are compared on the basis of how well

they predict what is observed� models that predict much less well than their competitors are

discarded� Most of the models in equation ��� have been discredited in the sense that they

predict the data far less well than the best models and so they should be discarded� Hence

they should not be included in equation ����

In our approach� if a model predicts the data far less well than the best model in the

�
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class it will be discarded� so that initially we exclude from equation ��� those models not

belonging to the set

A� �

�
Mk �

maxlfpr�Ml j D�g

pr�Mk j D�
� c

�
� ���

for some constant c� The value of c used will depend on the context� In our examples we

used c � ��� by analogy with the popular ��� cuto� for P �values� Je�reys ������ Appendix

B� would suggest some number between �� and ���� while Evett ������ suggests a value

of ���� for forensic evidence in criminal cases� �Note that we use pr�Mk j D� rather than

pr�D jMk� as the measure of how well the model predicts the data� In this way the likelihood

is weighted by the prior model probability p�Mk�� assumed to re�ect past data� This results

in a composite predictive probability for both past and present data��

Next we appeal to one of the most widely accepted norms of scienti�c investigation�

namely Occam�s razor� Let E represent the evidence and pr�HjE� the probability of a

speci�ed hypothesis H given the evidence E� Occam�s razor states that if�

pr�H�jE� � pr�H�jE� � ��� � pr�HkjE�

for hypotheses H�� ����Hk� then the simplest among H�� ����Hk is to be preferred �Kotz and

Johnson� ������ Thus we also exclude from equation ��� models belonging to the set

B �

�
Mk � �Ml � A

��Ml �Mk�
pr�Ml j D�

pr�Mk j D�
� �

�
���

and equation ��� is replaced by

pr�� j D�A� �
X

Mk�A

pr�� jMk�D�pr�Mk j D�A� �	�

where

A � A�nB�

This considerably reduces the number of models in the sum in equation ��� and hence

simpli�es the model uncertainty problem a great deal� Note that our argument is not an ap�

proximation adopted for computational convenience� but rather a solution based on accepted

scienti�c methodology� Also� note also that our approach in equation �	� will not necessarily

give an answer close to that given by equation ��� because� due to the very large number

of models in the class� the models discarded may have a large total posterior probabilityP
Mk ��A pr�Mk j D�� even though each individual model discarded has a very small posterior

probability� Similarly� excluding the models not in the set A may result in violations of the

�
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Figure �� Model Selection Strategy � A Simple Example

inequality ��� However� experience to date suggests that this will rarely happen and that

averaging over the models in A provides better predictive performance than conditioning on

a single model� See Section � for further discussion�

The problem thus reduces to �nding the set A� and we now outline a computational

strategy for doing this�

��� Model Selection Strategy

Our approach is heuristic in nature� and is a variant of the greedy�search algorithm� The

essentials of the approach are the same for the recursive causal models and the decomposable

models and could readily be applied to more general graphical models� Posterior model

probabilities are used as a metric to guide the search� The strategy proceeds out into model

space away from the opening set of models� comparing models via ratios of posterior model

probabilities in a series of nested comparisons� In what follows� M� will denote the smaller

of the two models being compared and M� will denote the larger� In fact� M� and M� will

di�er by just one link throughout�

Our basic rule is that if M� is rejected� then so are all its submodels� Here we de�ne

M to be a submodel of M� if all the links in M are also in M�� To see this� consider the

�undirected� example in Figure �� Suppose that we start with the saturated model �ABC�

of Figure ��a�� and that when we compare it with the model of conditional independence

�AC��BC� of Figure ��b�� we reject the smaller model decisively� Then we are precisely

rejecting the conditional independence of A and B given C� This conditional independence

also holds in all the submodels of �AC��BC� and so we reject all of those as well� including

the model �A��BC� of Figure ��c�� Thus� if we reject a model� we reject all its submodels�
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In the algorithm described in Section ��
� even this rule is relaxed in the sense that �A��BC�

may be subsequently considered as a submodel of a di�erent model�

Our basic rule is the �rst of two �coherence� rules proposed by Gabriel ������ for se�

quential testing procedures based on monotone test statistics� His second rule was that if a

model is not rejected� then no model that includes it is considered rejected� but this second

rule does not apply here because posterior model probabilities are not monotone �i�e�� unlike

deviance� for example� the posterior probability for a particular model can be smaller than

the posterior probability of its submodels�� The model selection strategy of Edwards and

Havr anek ������ is based on both these rules� while that of Havr anek ����� is based on the

�rst rule alone�

��� Occam�s Window

A crucial aspect of the strategy concerns the interpretation of the ratio of posterior model

probabilities when comparing two models� Again we appeal to Occam�s razor which we

implement as follows�

� If the log posterior odds is positive� i�e�� the data provides evidence for the smaller

model� then we reject M� and consider M�� We could generalize this by requiring the

log posterior odds to be greater than some positive constant OR before rejecting M��

� If the log posterior odds is small and negative� providing evidence against the smaller

model which is not very strong� then we consider both models�

� If the log posterior odds is large and negative� i�e� smaller than OL � � log�c� where

c is de�ned by equation ���� we reject M� and consider M��

Thus there are three possible actions following each comparison�see Figure ��

Now that the various elements of the strategy are in place� we outline the search tech�

nique� The search can proceed in two directions� �Up� from each starting model by adding

links� or �Down� from each starting model by dropping links� When starting from a non�

saturated� non�empty model� we �rst execute the �Down� algorithm� Then we execute the

�Up� algorithm� using the models from the �Down� algorithm as a starting point� Experi�

ence to date suggests that the ordering of these operations has little impact on the �nal set of

models� Let A and C be subsets of model spaceM� where A denotes the set of �acceptable�

models and C denotes the models under consideration� For both algorithms� we begin with

A � 	 and C �set of starting models�

�
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Inconclusive Evidence

��

Strong Evidence for M� Evidence for M�

� �
�

OL OR

log Pr�M�jD�
Pr�M�jD�

Figure �� Occam�s Window� Interpreting the log posterior odds� log Pr�M�jD�
Pr�M�jD�

� where M� is a
submodel of M�

BGMS
Down Algorithm

�� Select a model M from C

�� C 
 C n fMg and A 
 A� fMg


� Select a submodel M� of M by removing a link from M

� Compute B � log pr�M�jD�
pr�M jD�

�� If B � OR then A 
 An fMg and if M� �� C� C 
 C � fM�g

�� If OL � B � OR then if M� �� C� C 
 C � fM�g

	� If there are more submodels of M � go to 


�� If C �� 	� go to �

BGMS
Up Algorithm

�� Select a model M from C

�� C 
 C n fMg and A 
 A� fMg


� Select a supermodel M� of M by adding a link to M

� Compute B � log pr�M jD�
pr�M�jD�

�� If B � OL then A
 A n fMg and if M� �� C� C 
 C � fM�g

�
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�� If OL � B � OR then if M� �� C� C 
 C � fM�g

	� If there are more supermodels of M � go to 


�� If C �� 	� go to �

Upon termination� A contains the set of potentially acceptable models� Finally� we

remove all the models which satisfy equation ���� where � is replaced by exp�OR�� and those

models Mk for which
maxlfpr�Ml j D�g

pr�Mk j D�
� c� ���

The set A now contains the acceptable models�

� The Directed Case�Recursive Causal Model Se�

lection

��� Implementation

Implementation for the recursive causal models proceeds in a straightforward fashion� Con�

sider a recursive causal model for a set of random variables Xv� v � V � The model is

represented by a directed graph where each variable in V is represented by a node in the

graph� For each variable v � V we de�ne pa�v� to be the set of parent nodes of v� i�e� nodes

w for which there exists a directed link from w to v� The assumptions of the model imply

that the joint distribution of Xv� v � V � which we denote pr�V �� is given by

pr�V � �
Y
v�V

pr�vjpa�v���

Here� and in what follows� we are using node labels like v� to represent the random variables

which correspond to the nodes� In early implementations� pr�vjpa�v�� was assumed to be

fully speci�ed for all v by the expert!data analyst� Spiegelhalter and Lauritzen �����a�

introduced a parameterization for pr�vjpa�v�� whereby the relationship between a node v

and its parents pa�v� is fully speci�ed by a vector parameter �v � "v� This leads to a

conditional distribution for V �

pr�V j�� �
Y
v�V

pr�vjpa�v�� �v��

where � is a general parameter with components �v�

��
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Spiegelhalter and Lauritzen �����a� make two key assumptions which greatly simplify

subsequent analysis� The �rst assumption is that of global independence whereby the pa�

rameters �v are assumed mutually independent a priori� This assumption alone allows us to

calculate the likelihood for a single case�

pr�V � �
Z

pr�V� ��d� �
Z Y

v

pr�vjpa�v�� �v�pr��v�d�v �
Y
v

pr�vjpa�v��

where

pr�vjpa�v�� �
Z

pr�vjpa�v�� �v�pr��v�d�v�

The second assumption is that of local independence whereby the parameter �v breaks into

components corresponding to the levels of the factors in pa�v�� These components are as�

sumed to be mutually independent a priori�

Now consider a conditional probability distribution pr�vjpa�v��� ��v � � ��v for a speci�c

set of levels� pa�v��� of pa�v�� We assume that ��v has a Dirichlet distribution D���� � ���� �
�
k �

where k is the number of levels of v� Then we can show that

pr�v � jjpa�v��� � ��j �
X
i

��i � j � �� �� � � � � k�

If we observe v to be at level xvj and the parent state to be pa�v��� we have

��v jv  D���� � ���� �
�
j # �� ���� ��k ��

This provides a method for sequentially calculating the required ratios of posterior model

probabilities and is simpler than the non�sequential approach� Furthermore� the sequential

approach allows for e�cient incorporation of new evidence� The elicitation of the required

Dirichlet priors is feasible provided the cardinality of pa�v� is not too large� Computer�

based methods for eliciting Dirichlet prior distributions have been described by Chaloner

and Duncan ����	�� If pa�v� is not observed the updating becomes more complex�see

Spiegelhalter and Lauritzen �����a�����b� for details� A Je�reys prior density was used in

the examples� i�e� ��i � ���� for i � �� �� � � � � k� A uniform prior typically selects identical

models�

A considerable computational saving is obtained by noting that the sequential updating of

the distribution of �v depends on the levels of v and pa�v� only� Therefore the likelihood for all

qualitative layers �graphs� having the same set pa�v� of parent nodes of v will have identical

contributions from v� For example� consider the two recursive causal models of Figure 
�

When calculating the likelihood for the model of Figure 
�a�� we store the likelihood of each

��
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Figure 
� Simplifying the Likelihood Computations

node!parent combination separately� Now when subsequently calculating the likelihood for

the model of Figure 
�b�� only the likelihood for node B requires recalculation as the sets of

parent nodes of A and C have not changed�

To implement the model selection strategy described in Section � for the recursive causal

models an ordering of the nodes must be pre�speci�ed by the expert!data analyst� If vi

precedes vj in the ordering� then a directed link from vj to vi is prohibited� In certain

applications it may be possible to search over all possible orderings but this will typically

not be the case� Pearl�s IC�algorithm �Pearl and Verma� ����� induces directed �causal�

structures from data� An ordering of the nodes is not required� but for each pair of nodes vi

and vj� the algorithm does involve searching amongst all subsets of V n fvi� vjg for cutsets

between vi and vj �sets which when conditioned on� render vi and vj independent�� Cooper

and Herskovits ������ provide a review of other approaches�

��� Examples

����� Coronary Heart Disease Risk Factors

Firstly we consider a data set which has been previously analysed by Edwards and Havr anek

������� The data concerns ���� men cross�classi�ed according to six coronary heart disease

risk factors� The risk factors are as follows� A� smoking� B� strenuous mental work� C�

strenuous physical work� D� systolic blood pressure� E� ratio of � and 	 proteins� F � family

anamnesis of coronary heart disease�

Their likelihood ratio�based model selection strategy selected two graphical log�linear

models� �AC��ADE��BC��BE��F � which is not decomposable and therefore is not equivalent

to any recursive causal model� and �ACE��ADE��BC��F � which is decomposable� A striking

��
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Figure � Models Selected by Edwards and Havr anek

Table �� Coronary Heart Disease� Posterior Model Probabilities for Recursive Causal Models

Figure Posterior
probability �

��a� ��
��b� �
��c� �
��d� 

feature of both models is the independence of F � family anamnesis� The models are shown

in Figure �

To implement the Bayesian graphical model selection procedure� we started from the

saturated model and used the �Down� algorithm only �starting from the empty model and

using the �Up� algorithm produced the same set of models�� All qualitative structures

were assumed equally likely a priori� A natural partial ordering of the variables suggests

itself� F� �B�C�� A� �E�D�� The variables B�F or C could not be �in�uenced� by the other

factors and must be exogenous� although the ordering of B and C is unclear� Similarly�

D or E could hardly in�uence A� although the ordering of E and D is unclear� The four

corresponding complete orderings produced strong evidence for the precedence of E over D�

and weak evidence for the precedence of C over B� Several further orderings were tried�

but this �natural� ordering resulted in the models with highest posterior probabilities� The

selected models are shown in Figure � and their posterior probabilities in Table ��

The two most likely models are shown in Figures ��a� and ��b�� They are rather similar

in that both contain the CB� CA� AE� ED and AD links� The main di�erence between

�
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Figure �� Coronary Heart Disease� Recursive Causal Models Selected

them lies in the way they describe the e�ect of strenuous mental work �B� and strenuous

physical work �C� on the ratio of � and 	 proteins �E�� Model ��a� says that C a�ects E

both directly and indirectly via A� whereas model ��b� says that the e�ect of C on E is solely

indirect� being mediated by B and A� There is also some uncertainty about the presence of

a link from smoking �A� to systolic blood pressure �D�� The evidence favors the marginal

independence of family anamnesis of coronary heart disease �F ��

The four models selected are similar to the models selected by Edwards and Havr anek

������ and shown in Figure � We note that the AD link �smoking and systolic blood

pressure� is present in both of the models of Figure  and also in models �a� and �b� of

Figure �� but it is absent from models �c� and �d� of Figure �� In fact� the exact test for zero

partial association of A and D reported by Edwards and Havr anek ������ had a signi�cance

level of ��� which was the largest of any of the links whose absence was rejected at the ��

level�

�
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����� Women and Mathematics

Our second example concerns a survey which was reported in Fowlkes et al� ������ concerning

the attitudes of New Jersey high�school students towards mathematics� The data has been

further analysed by Upton ������� A total of ���� students in eight schools took part in the

survey� Data on six dichotomous variables was collected�

A� Lecture Attendance� attended or did not attend�

B� Sex� female or male�

C� School Type� suburban or urban�

D� �I�ll need mathematics in my future work�� agree or disagree�

E� Subject Preference� maths!science or liberal arts�

F� Future Plans� college or job�

Upton ������ reports that a model selection procedure based on the AIC criterion

�Akaike� ��	
� selects �ABCE��CDF ��BCD��DEF � while a procedure based on the BIC cri�

terion �Raftery� ����a� selects the much simpler �A��BE��CE��CF ��BD��DE��DF �� Clearly

an important di�erence between these two models is the treatment of A�

The Bayesian graphical model selection procedure started from the empty model and

used the �Up� algorithm� It is clear that B �Sex� cannot be in�uenced by other variables

and must be exogenous� Initially it was also assumed that C �School Type� was exogenous�

An exhaustive search over all consequent orderings produced the single model shown in

Figure ��

The selected model is similar to the model selected by Upton�s BIC procedure� The

model selected by AIC clearly over��ts the data �Upton� ������ It is of interest to note the

direction of the link from D to F � Both Upton ������ and Fowlkes et al� ������ treat D as

a response variable and Upton�s path diagram shows a directed link from F to D� However�

the data provides strong evidence that the direction of the in�uence is from D to F � i�e� that

students� attitudes towards mathematics in�uence their future plans� rather than the other

way around� The ability of the selected model to predict is una�ected by the direction of

the ED link�

Further analysis removed the restriction that C be exogenous� The data now provides

some support for the presence of a link from E to C although its interpretation is somewhat

unclear�

��
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Figure �� Women and Mathematics� Recursive Causal Model Selected

� The Undirected Case�Decomposable Model Selec�

tion

��� Implementation

To implement the strategy for the decomposable models� we rely heavily on a recent funda�

mental paper by Dawid and Lauritzen ����
�� hereafter DL� We consider three issues which

are speci�c to model selection for the decomposable models�

First� how should we add and remove links whilst e�ciently ensuring that all the models

created are decomposable� Here we use a result which follows from Lemma 
 of Frydenberg

and Lauritzen ������� Let G � �V�E� be a chordal graph with vertices V and edges E and let

G� � �V�E�� be a chordal subgraph of G with exactly one edge� e� less� Then e is contained

in exactly one clique of G� Therefore� the model selection strategy must remove only links

which are members of a single clique� When adding links� the strategy must not create any

chordless four�cycles�

Second� given any two decomposable modelsM andM�� is it possible to generateM� from

M � adding or removing only one edge at a time but staying within the class of decomposable

models� Lemma � of Frydenberg and Lauritzen ������ shows this to be the case�

Finally� how do we calculate the required posterior model probabilities� Following DL�

we consider a decomposable model M for a set of random variables Xv� v � V � whose joint

distribution is speci�ed by a vector parameter� �� �� in turn� is determined by the clique

marginal probability tables �C � ��C�C�C where C denotes the set of cliques of M �

��i� �

Q
C�C �C�iC�Q
S�S �S�iS�

� i � I�

��



www.manaraa.com

where S denotes the system of separators in an arbitrary perfect ordering of C� and I denotes

the set of possible con�gurations of X�

For each clique C � C� let

�C � ��C�iC��iC�IC

be a given table of arbitrary positive numbers and let D��C � denote the Dirichlet distribution

for �C with density


��Cj�C� �
Y

iC�IC

�C�iC�
�C�iC����

where
P

iC
�C�iC� � � and ��iC� � ��

Now let us suppose that the collection of speci�cations D��C�� C � C are constructed in

such a way that for any two cliques C and D in C we have�

�C�iC�D� � �D�iC�D��

Then DL show that there exists a unique strong hyper�Markov distribution for � over M

that has density D��C� for all C � C� DL call this the hyper�Dirichlet distribution for ��

A distribution for � is strong hyper�Markov if and only if �AjB� �BjA and �A�B are mutually

independent whenever A�B is complete and separates A from B� It follows that by letting

�� �
P

i�I �i� the likelihood for a single case is given by�

pr�v� �

Q
C�C �C

���
Q
S�S �S�

�

From Proposition � we have that updating can be carried out one clique at a time�

Proposition � If the prior distribution L��� is strong hyper�Markov� the posterior dis�

tribution of � is the unique hyper�Markov distribution L� speci�ed by the clique�marginal

distributions fL�
C � C � Cg� where L�

C is the posterior distribution of �C based on its prior

distribution LC and the clique�speci�c data XC � xC�

Proof� This is Corollary � of DL�

The posterior distribution for �C given data nC from the marginal table corresponding

to clique C is D��C # nC��

Consider the Bayes factor

B�� �
pr�DjM��

pr�DjM��

�	
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Figure 	� Coronary Heart Disease� Decomposable Models Selected

where M� and M� are decomposable and M� is obtained from M� by deleting one edge e

linking u with v� Since both models are decomposable we have that e is contained in a single

clique� C say� of M�� Let Cu � C n fvg� Cv � C n fug� C� � C n fu� vg� Then DL show that

the Bayes factor is given by�

B�� �
pCu�DCu�pCv�DCv �

pC�
�DC�

�pC�DC�
�

Thus� the required decomposable model comparisons can be carried out very rapidly with

calculations local to single cliques�

��� Examples

����� Coronary Heart Disease Risk Factors

Firstly we consider again the coronary heart disease risk factor data of Edwards and Havr anek

������� We note that the model of Figure �a� which was selected by the Edwards and

Havr anek procedure is not decomposable and hence will not be selected by our procedure�

The selection procedure started from the saturated model and used the �Down� algo�

rithm� All qualitative structures were assumed equally likely a priori� A standard Je�reys

prior was adopted for �C� C � C� Just two models were selected and they are shown in Figure

	� Starting from the empty model and using the �Up� algorithm resulted in the same two

models� The corresponding posterior probabilities are shown in Table ��

The model of Figure 	�a� was also selected by the directed model selection procedure and

by Edwards and Havr anek ������� The model of Figure 	�b� is essentially a decomposable

version of the directed model of Figure ��b� and Edwards and Havr anek�s model of Figure

�a��

��
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Table �� Coronary Heart Disease� Posterior Model Probabilities for Decomposable Models

Figure Model Posterior
probability �

	�a� �BC��ACE��ADE��F � ��
	�b� �ABC��ABE��ADE��F � �
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Figure �� Women and Mathematics� Decomposable Models Selected

Overall� the model selection exercise indicates that there is very strong evidence for the

BC� AC� AE and DE links� with evidence for the AD link that is strong but somewhat

less so� There is also some evidence for the CE and BE links� but it seems that one of

these alone is enough to describe the data� and it is not fully clear which one is better� Of

course the interpretation of these links is di�erent in the two model classes� Again� as in the

directed case� there is evidence for the marginal independence of F �

����� Women and Mathematics

We consider again the survey data previously analysed by Fowlkes et al� ������ and Upton

������� We note that the models selected in Upton ������ are not graphical and hence will

not be selected by our procedure� The procedure adopted was identical to that adopted

for the example of Section ����� The two models selected are shown in Figure � and the

corresponding posterior probabilities are shown in Table 
�

As in the directed case� the selected models are close to the models selected by the BIC

model selection procedure carried out by Upton ������� However there is uncertainty about

the CD link �School Type and �I�ll need mathematics in my future work�� which is not

apparent in Upton�s analysis� The odds in favor of the inclusion of the CD link are 
 to ��

��
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Table 
� Women and Mathematics� Posterior Model Probabilities for Decomposable Models

Figure Model Posterior
probability �

��a� �A��BDE��CDF � 	�
��b� �A��BDE��DF ��CF � ��

which Je�reys ������ would call evidence �not worth more than a bare mention�� The data

strongly supports the marginal independence of A�

����� Scrotal Swellings

Our �nal example concerns the diagnosis of scrotal swellings� Data on ��� patients was

gathered at the Meath Hospital� Dublin� Ireland under the supervision of Mr� Michael R�

Butler� We consider a cross�classi�cation of the patients according to one disease class�

Hernia �H�� and 	 binary indicants as follows� A� possible to get above the swelling� B�

swelling transilluminates� C� swelling separate from testes� D� positive valsalva!stand test�

E� tender� F � pain� G� evidence of other urinary tract infections� The data is shown in Table

� There are �� possible links to be considered by the selection procedure in this example�

In the absence of prior expert opinion� computation times can be prohibitive� Clearly� if

the starting point for the selection procedure were close to the models for which the data

provides evidence� this problem could be overcome�

With this objective we adopted the following heuristic procedure� First� Bayes factors for

each of the �� links are calculated by comparing the saturated model with the �� sub�models

generated by removing single links� The model consisting of the links for which the data

provides evidence in this manner is then used as a starting point for the selection procedure�

If this model is not decomposable� some of the links may be removed or additional ones may

be added� A similar approach was suggested by Goodman ���	
�� The starting model is

shown in Figure ��

Now the �Up� algorithm is executed� followed by the �Down� algorithm �or vice versa��

Note that if the starting links are badly chosen� the complete procedure has the opportunity

to remove them� although� in this example� the �nal model contains all the links from the

starting model� Two models were selected by this procedure and they are shown in Figure

��� The corresponding posterior probabilities are shown in Table ��

The result of primary interest here is the importance of A �possible to get above swelling�

��
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Table � Scrotal Swelling data

Indicants
Hernia A B C D E F G Count

N N N N N Y Y N �
N Y N N N N N N ��
N Y N N N N Y N 

N Y N N N Y Y N ��
N Y N N N Y Y Y �	
N Y N Y N N N N 
�
N Y N Y N N N Y �
N Y N Y N N Y N 

N Y N Y N Y N N �
N Y N Y N Y Y N ��
N Y N Y N Y Y Y 
N Y N Y Y N N N 
�
N Y N Y Y N Y N 

N Y Y N N N N N 
�
N Y Y N N N N Y �
N Y Y N N N Y N 

N Y Y N N Y Y N 

N Y Y Y N N N N ��
N Y Y Y N Y Y N �
Y N N Y Y N N N 
�
Y N N Y Y N Y N �
Y Y N Y Y N N N �

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

A D C G

H B E F

Figure �� Starting Model for Scrotal Swelling Example
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Figure ��� Scrotal Swellings� Decomposable Models Selected

Table �� Scrotal Swellings� Posterior Model Probabilities for Decomposable Models

Figure Model Posterior
probability �

��a� �AH��DH��BDE��CDE��EF ��EG� 	�
��b� �AH��DH��BDE��CD��EF ��EG� ��

��
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and D �valsalva!stand test� with respect to Hernia diagnosis� Both indicants can be estab�

lished through simple procedures at physical examination� The only real model uncertainty

which is exhibited concerns the relationship between C �swelling separate from testes� and

E �tender�� The odds in favor of the inclusion of the CE link are 
 to � �evidence not

worth more than a bare mention�� Analysis of further cross�classi�cations extracted from

this database also yield similarly sparse models�

� Performance

Following Dawid ������ we contend that one of the primary purposes of statistical analysis

is to make forecasts for the future� Therefore� one way we can judge the e�cacy of a model

selection strategy� is to measure how well the resulting models predict future observations�

In the case of Occam�s Window� our speci�c objective is to compare the quality of the

predictions based on model averaging against those based on any single model that an

analyst might reasonably have selected�

We examined the predictive performance for each of the examples considered previously

as follows� we randomly split the complete data sets into two subsets� One subset� DS �

containing ��� of the data� was used to select models� while DT � D nDS � was used as a

set of test cases� We measured performance by the logarithmic scoring rule of Good �������

Speci�cally� we measured the predictive ability of an individual model� M � with�

�
X
d�DT

log pr�d jM�DS��

We measured the predictive performance of model averaging with�

�
X
d�DT

logf
X
M�A

pr�d jM�DS�pr�M j DS �g�

where A is the set of selected models�

We present results in Tables �� 	 and � for each of the undirected examples of Section �

In each case� we give the models selected and the performance measure �up to a normalising

constant� for each individual model and for model averaging� For the Coronary Heart Disease

example� we also include the score for the model selected by Whittaker ������ on the basis

of the full data set� The models selected by Upton ������ and Fowlkes et al� ������ are not

included because they are not decomposable�

In each case� the method that averages over the models selected provides predictive

performance which is superior to the performance resulting from basing the inference on any

�
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Table �� Coronary Heart Disease� Predictive Performance

Model Posterior Logarithmic
probability � Score

�AE��BC��BE��DE��F � �� ���
�AC��BC��BE��DE��F � �� �����
�AC��AE��BC��DE��F � �
 �����
�A��BC��BE��DE��F � � �����
�AE��BC��BE��D��F � � ����	
�AE��BC��DE��F � 	 ��
�	

�AC��BC��BE��D��F � � �����
�AC��BC��DE��F �  �����

�AC��AE��BC��D��F �  ��	�
�A��BC��BE��D��F � 
 ����
�A��BC��DE��F � � �����
�AE��BC��D��F � � �����

�AC��BC��D��E��F � � ����	
�ABCE��ADE��BF � Whittaker ����
Model Averaging ��
��

Table 	� Women and Mathematics� Predictive Performance

Model Posterior Logarithmic
probability � Score

�A��B��CDF ��DE� 	� 

����
�A��B��CF ��DE��DF � �� 

�	�


�A��B��CF ��DE�  

���
Model Averaging 

�
��

�
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Table �� Scrotal Swellings� Predictive Performance

Model Posterior Logarithmic
probability � Score

�AH��AD��BDE��CD��EF ��FG� 
 ����

�AH��DH��BDE��CD��EF ��FG� 
 �����
�AH��DH��BDE��CDE��EF ��FG� � �����
�AH��AD��BDE��CDE��EF ��FG� � ����

�AH��AD��BDE��CD��EF ��EG� �� ��
�
�AH��DH��BDE��CD��EF ��EG� �� ��	�	
�AH��DH��BDE��CDE��EF ��EG� �	 ����	
�AH��AD��BDE��CDE��EF ��EG� �	 ���

Model Averaging ����

single model which might reasonably have been selected� In the coronary heart disease data�

for example� our model averaging method outperforms the �best� model �i�e� that with the

highest posterior probability� by 
� points of log predictive probability� or �� points on the

scale of twice the log probability on which deviances are measured� Repeating the random

split or varying the subset proportions produces very similar performance results�

We also carried out a ROC �receiver operating characteristic� analysis for each of the

examples� In Figure �� we show two ROC curves for the variable E� ratio of � and 	

proteins� in the coronary heart disease example� The solid ROC curve shows how well the

single model with the highest posterior probability predicts variable E while the dashed

curve shows the performance achieved by averaging over the selected models� Again we used

��� of the data to select models and the remainder for testing�

These ROC curves show the false�positive and true�positive proportions for di�erent

probability thresholds for variable E� The area above the curve in the unit square provides

a measure of predictive ability� Model averaging provides substantially better predictive

performance in this instance� The area above the curve is ���� for model averaging� and ����

for the best single model� Thus model averaging reduces the average False Positive rate for

a given True Positive rate by about two�thirds� where the False Positive rates are averaged

over all True Positive rates� Model averaging is not guaranteed to provide superior predictive

performance for each variable although the situation in Figure �� is typical�

��
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Figure ��� Coronary Heart Disease� ROC Curves for Node E
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	 Discussion

��� General Comments and Other Approaches

We have outlined an overall strategy for model selection and accounting for model uncertainty

in two important classes of models for high�dimensional contingency tables� This involves a

rede�nition of the Bayesian model uncertainty formalism� an e�cient way of computing exact

Bayes factors that exploits the graphical structure� and an algorithm for quickly searching

through the very large model classes involved� The resulting procedure is quite e�cient�

for the example of Section ����� approximately 
���� model comparisons per minute can be

carried out on a Sun IPC�

There is a considerable literature on model selection for multidimensional contingency

tables� this is generally concerned with the selection of a single �best� model� Most of it is

based on the asymptotic properties of goodness�of��t statistics �Goodman ���	
�� Wermuth

���	��� Havr anek ������ Whittaker ������ Edwards and Havr anek ������ or Fowlkes et al�

�������� There are also approaches based on information criteria and discrepancy measures

�Gokhale and Kullback� ��	�� Sakamoto� ���� Linhart and Zucchini� ������ A recent review

is provided by Upton ������ who advocates the use of the BIC statistic� The calculation of

Bayes factors for contingency table models has been considered by Spiegelhalter and Smith

������� Raftery �����a� ����� ���
�� Spiegelhalter and Lauritzen �����a� and Spiegelhalter

and Cowell �������

Pearl and Verma ������ and Glymour et al� ����	� have proposed strategies for recovering

causal structure from data� While these authors� objectives di�er from ours� their procedures

for selecting directed graphical structures have much in common with our recursive causal

model selection strategy�

Cooper and Herskovits ������ and Anderson et al� ������ have examined model selection

in the context of probabilistic expert systems� In both cases� the examples are based solely

on data analysis and the incorporation of prior expert opinion is not considered� Cooper

and Herskovits ������ describe a general theory involving averaging over all models and

suggest possible approximations� Their K� strategy which seeks out the �best� recursive

causal model for the qualitative layer� where �best� is taken to mean the single model with

maximum probability� The algorithm starts with a model with no links and at each stage

adds the directed link which most increases the model probability� The user must pre�specify

an ordering of the nodes� Anderson et al� ������ carry out their search in the undirected

graphical model framework using a method introduced by Kreiner ����	�� The di�culties

�	



www.manaraa.com

with large sparse tables mentioned above are avoided by using exact tests when comparing

models�

��� Model Priors

In the examples considered above� the prior model probabilities pr�M� were assumed equal

�Cooper and Herskovits� ����� also assume that models are equally likely a priori�� In

general this can be unrealistic and may also be expensive and we will want to penalise the

search strategy as it moves further away from the model�s� provided by the expert�s�!data

analyst�s�� Ideally one would elicit prior probabilities for all possible qualitative structures

from the expert but this will be feasible only in trivial cases�

For models with fewer than �� to �� nodes� prior model probabilities may be approxi�

mated by eliciting prior probabilities for the presence of every possible link and assuming

that the links are mutually independent� as follows� Let E � EP � EA denote the set of all

possible links for the nodes of model M � where EP denotes the set of links which are present

in model M and EA denotes the absent links� For every link e � E we elicit pr�e�� the prior

probability that link e is included in M � The prior model probability is then approximated

by

pr�M� �
Y
e�EP

pr�e�
Y
e�EA

�� � pr�e���

Prior link probabilities from multiple experts are treated as independent sources of informa�

tion and are simply multiplied together to give pooled prior model probabilities� Clearly�

the contribution from each expert!data analyst could be weighted�

For applications involving a larger number of nodes or where the elicitation of link prob�

abilities is not possible� we could assume that the �evidence� in favour of each link included

by the expert�s�!data analyst�s� in the elicited qualitative structure�s� is �substantial� or

�strong� but not �very strong� or �decisive� �Je�reys� ������ For example� we could as�

sume that the evidence in favour of an included link lies at the center of Occam�s window

corresponding to a prior link probability for all e � EP of

pr�e� �
�

� # exp�OL�OR� �
�

Similarly� the prior link probabilities for e � EA are given by

pr�e� �
exp�OL�OR� �

� # exp�OL�OR� �
�

��
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In the directed case it may be possible to construct a prior distribution on the space of

orderings�see Critchlow ������ for further discussion�

��� Remaining Issues

While we believe that the methods we propose provide a workable approach to qualita�

tive updating in expert systems� some issues remain� Spiegelhalter and Lauritzen �����a�

and other authors have expressed concerns about automatically updating the qualitative

structure without reference to the domain expert� Such concerns need to be addressed in

the context of real expert systems� Extension of the methods to include the more general

graphical models of Wermuth and Lauritzen ������ and Edwards ������ will also be impor�

tant� Missing data will frequently be a problem and we are currently exploring a number of

techniques for the incorporation of missing data in the model selection strategy�

In the examples we have used vague priors for the model parameters that do not incor�

porate speci�c prior information� However� in expert system applications there will often

be substantial prior information� and taking account of it would be expected to improve

performance� How to elicit the required Dirichlet prior distributions is therefore a major

issue� Direct elicitation is typically intractable� this has been a barrier to the use of the DL

approach�

Madigan and Raftery ������ outlined a simple approach to the elicitation of the required

priors� They regarded the parameters of the Dirichlet prior distribution as �equivalent prior

samples�� which are elicited subject to constraints that ensure consistency� The priors are

elicited sequentially in a way that avoids the need to store the full �equivalent prior� table�
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