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Abstract

We consider the problem of model selection and accounting for model uncertainty
in high-dimensional contingency tables, motivated by expert system applications. The
approach most used currently is a stepwise strategy guided by tests based on approxi-
mate asymptotic P-values leading to the selection of a single model; inference is then
conditional on the selected model. The sampling properties of such a strategy are
complex, and the failure to take account of model uncertainty leads to underestima-
tion of uncertainty about quantities of interest. In principle, a panacea is provided
by the standard Bayesian formalism which averages the posterior distributions of the
quantity of interest under each of the models, weighted by their posterior model prob-
abilities. Furthermore, this approach is optimal in the sense of maximising predictive
ability. However, this has not been used in practice because computing the posterior
model probabilities is hard and the number of models is very large (often greater than
10'h).

We argue that the standard Bayesian formalism is unsatisfactory and we propose
an alternative Bayesian approach that, we contend, takes full account of the true
model uncertainty by averaging over a much smaller set of models. An efficient search
algorithm is developed for finding these models. We consider two classes of graphical
models that arise in expert systems: the recursive causal models and the decomposable
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log-linear models. For each of these, we develop efficient ways of computing exact
Bayes factors and hence posterior model probabilities. For the decomposable log-
linear models, this is based on properties of chordal graphs and hyper-Markov prior
distributions and the resultant calculations can be carried out locally. The end product
is an overall strategy for model selection and accounting for model uncertainty that
searches efficiently through the very large classes of models involved.

Three examples are given. The first two concern data sets which have been analysed
by several authors in the context of model selection. The third addresses a urological
diagnostic problem. In each example, our model averaging approach provides better
out-of-sample predictive performance than any single model which might reasonably

have been selected.

KEYWORDS: Chordal graph; Contingency table; Decomposable log-linear model; Expert

system; Hyper-Markov distribution; Recursive causal model.
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1 Introduction

Fruitful approaches to inference in high-dimensional contingency tables all involve choosing
a broad class of models to be considered and then comparing them on the basis of how well
they predict the data. Typically, the model classes are huge and inference in the presence of
the many competing models is not easy.

Here we consider two classes of graphical models: the recursive causal models of Kiiveri
et al. (1984) and the decomposable log-linear models introduced by Goodman (1970) and
Haberman (1974). This work is motivated by applications in expert systems which use a
belief network to represent knowledge and perform inference (Lauritzen and Spiegelhalter,
1988). These are the two model classes that arise in such applications. Potentially the most
important advantage of constructing expert systems in this fashion is the system’s ability
to modify itself as data becomes available. In a series of recent papers, Spiegelhalter and
Lauritzen (1990a,1990b), Dawid and Lauritzen (1993) and Spiegelhalter and Cowell (1991)
have addressed the issue of updating the quantitative layer of such models. Building on this
work, we address the issue of updating the qualitative layer—how can the graphical structure
itself be updated as data becomes available?

Currently, the most used approach to model selection in contingency tables is a stepwise
one, adapted from stepwise regression by Goodman (1971); see also Bishop, Fienberg and
Holland (1975, Section 4.5 and Chapter 9). This consists of sequentially adding and deleting
terms on the basis of approximate asymptotic likelihood ratio tests, leading to the selection
of a single model. Inference about the quantities of interest is then made conditionally on
the selected model.

There are several difficulties with this approach. The sampling properties of the overall
strategy are complex because it involves multiple tests and, at least implicitly, the compar-
ison of non-nested models (Fenech and Westfall, 1988). The use of P-values themselves is
controversial, even when there are only two models to be compared, because of the so-called
“conflict between P-values and evidence” discussed by Berger and Sellke (1987) and Berger
and Delampady (1987). One aspect of this is that tests based on P-values tend to reject
even apparently satisfactory models when the sample size is large; a dramatic example of
this was discussed by Raftery (1986b). On the other hand, when the sample size is small
and the table sparse, the asymptotic approximations on which the P-values are based tend
to break down.

Perhaps most fundamentally, conditioning on a single selected model ignores model un-
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certainty and so leads to underestimation of the uncertainty about the quantities of interest.
This underestimation can be large, as was shown by Regal and Hook (1991) in the contin-
gency table context and by Miller (1984) in the regression context. One bad consequence is
that it can lead to decisions that are too risky (Hodges, 1987).

In principle, the standard Bayesian formalism provides a panacea for all these difficulties.
If A is the quantity of interest, such as a parameter, a future observation, or the utility of a

course of action, then its posterior distribution given data D is

pr(A | D) = 3" pr(A | My, D)pr(My | D). 1)

k=1
This is an average of the posterior distributions under each of the models, weighted by their

posterior model probabilities. In equation (1), My,..., Mk are the models considered and

pr(D | My )pr(My)

My | D) = =x ’
pr(My. | D) SR pr(D | My)pr(M,)

(2)

where
pr(D | My) = [ pr(D | 6, Mi)pr(6 | My)do) (3)
is the marginal likelihood of model My, 0} is the (vector) parameter of My, pr(6y | My) is the
prior distribution of 0, pr(D | 0y, My) is the likelihood, and pr(Mjy) is the prior probability
of M.
Furthermore, averaging over all the models in this fashion provides better predictive

ability, as measured by a logarithmic scoring rule, than using any single model M;:

< —Eflog{pr(A [ M, D)} (G =1,.... K),
(4)

where A is the observable to be predicted and the expectation is with respect to Y1, pr(A |
My, D)pr(My | D). This follows from the non-negativity of the Kullback-Leibler information

divergence. The logarithmic scoring rule was suggested by Good (1952) and assigns to each

- | {2 pr(A | 21 D)pr(3s D)

k=1

event A which occurs a score of —log{pr(A)}. See Dawid (1986) for further discussion and
Kass and Raftery (1993) for a review of the general approach.

Cooper and Herskovits (1992) present this approach in the context of recursive causal
models. However, the approach in general has not been adopted in practice. This appears to
be because (a) the posterior model probabilities pr(Mj | D) are hard to compute since they
involve the very high-dimensional integrals in equation (3), and (b) the number of models in

thessumpinsequations(djscansbe huge. For example, with just 10 variables (small by expert

4
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system standards) there are approximately 4 x 10'® recursive causal models and 2 x 10
decomposable models.

One might hope that most of the posterior probability would be accounted for by a
small number of models so that the sum in equation (1) would be well approximated by
a small number of terms. Unfortunately, this is not typically the case because, although
a small number of models do have much higher posterior probabilities than all the others,
the very many models with small posterior probabilities contribute substantially to the sum.
For example, Moulton (1991) reported a regression example with 2'* = 4096 models where
about 800 models were needed to account for 90% of the posterior probability.

We argue that the standard Bayesian formalism of equation (1) is flawed. Adopting
standard methods of scientific investigation, we contend that accounting for the true model
uncertainty involves averaging over a much smaller set of models. We present simple and
efficient ways of computing the exact posterior model probabilities for the two model classes
considered. Our approach is to take advantage of the graphical structure to calculate the
required probabilities very quickly, while representing prior opinion in an easily elicitable
form. We also describe an efficient algorithm for searching the very large model space.

Putting all this together gives us a simple and computationally efficient way of selecting
the best models and accounting for model uncertainty in recursive causal models and decom-
posable log-linear models. To demonstrate the generality of our approach, our discussion will
be in the context of conventional statistical model selection rather than expert systems. In
Section 2 we describe the principles underlying our approach to model selection. In Section
3 we apply those principles to the recursive causal models, while in Section 4 we consider

the decomposable models.

2 Model Selection Strategy

2.1 General Principles and Occam’s Razor

We argue that equation (1) does not accurately represent model uncertainty. Science is an
iterative process in which competing models of reality are compared on the basis of how well
they predict what is observed; models that predict much less well than their competitors are
discarded. Most of the models in equation (1) have been discredited in the sense that they
predict the data far less well than the best models and so they should be discarded. Hence
they should not be included in equation (1).

In_our approach, if a model predicts the data far less well than the best model in the
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class it will be discarded, so that initially we exclude from equation (1) those models not

,_{y, mas{prMi| D)}
A‘{M’“' pr(My | D) S}’ ©)

for some constant ¢. The value of ¢ used will depend on the context. In our examples we

belonging to the set

used ¢ = 20, by analogy with the popular .05 cutoff for P-values; Jeffreys (1961, Appendix
B) would suggest some number between 10 and 100, while Evett (1991) suggests a value
of 1000 for forensic evidence in criminal cases. (Note that we use pr(My | D) rather than
pr(D | My) as the measure of how well the model predicts the data. In this way the likelihood
is weighted by the prior model probability p(M}), assumed to reflect past data. This results
in a composite predictive probability for both past and present data.)

Next we appeal to one of the most widely accepted norms of scientific investigation,
namely Occam’s razor. Let F represent the evidence and pr(H|FE) the probability of a
specified hypothesis H given the evidence E. Occam’s razor states that if:

pr(Hy|E) = pr(Ha|E) = ... = pr(Hy|E)

for hypotheses Hi, ..., Hg, then the simplest among Hy, ..., Hy, is to be preferred (Kotz and

Johnson, 1985). Thus we also exclude from equation (1) models belonging to the set

/ pI’(M[ | D)
=M, :dM, My Cc M, ———>1
B { k l€A7 lC k?pr(Mk|D) > (6)

and equation (1) is replaced by

pr(A | D, A)= Y pr(A | My, D)pr(My | D, A) (7)
MpeA
where
A= A\B.

This considerably reduces the number of models in the sum in equation (1) and hence
simplifies the model uncertainty problem a great deal. Note that our argument is not an ap-
proximation adopted for computational convenience, but rather a solution based on accepted
scientific methodology. Also, note also that our approach in equation (7) will not necessarily
give an answer close to that given by equation (1) because, due to the very large number
of models in the class, the models discarded may have a large total posterior probability
> ga Pr(My | D), even though each individual model discarded has a very small posterior

probabilitysSimilarlysexcluding the models not in the set A may result in violations of the

6
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Figure 1: Model Selection Strategy - A Simple Example

inequality (4). However, experience to date suggests that this will rarely happen and that
averaging over the models in A provides better predictive performance than conditioning on
a single model. See Section 5 for further discussion.

The problem thus reduces to finding the set A, and we now outline a computational

strategy for doing this.

2.2 Model Selection Strategy

Our approach is heuristic in nature, and is a variant of the greedy-search algorithm. The
essentials of the approach are the same for the recursive causal models and the decomposable
models and could readily be applied to more general graphical models. Posterior model
probabilities are used as a metric to guide the search. The strategy proceeds out into model
space away from the opening set of models, comparing models via ratios of posterior model
probabilities in a series of nested comparisons. In what follows, My will denote the smaller
of the two models being compared and M; will denote the larger. In fact, My and M; will
differ by just one link throughout.

Our basic rule is that if My is rejected, then so are all its submodels. Here we define
M to be a submodel of My if all the links in M are also in My. To see this, consider the
(undirected) example in Figure 1. Suppose that we start with the saturated model [ABC]
of Figure 1(a), and that when we compare it with the model of conditional independence
[AC][BC] of Figure 1(b), we reject the smaller model decisively. Then we are precisely
rejecting the conditional independence of A and B given . This conditional independence
also holds in all the submodels of [AC][BC] and so we reject all of those as well, including
the model [A][BC] of Figure 1(c). Thus, if we reject a model, we reject all its submodels.
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In the algorithm described in Section 2.3, even this rule is relaxed in the sense that [A][BC]
may be subsequently considered as a submodel of a different model.

Our basic rule is the first of two “coherence” rules proposed by Gabriel (1969) for se-
quential testing procedures based on monotone test statistics. His second rule was that if a
model is not rejected, then no model that includes it is considered rejected, but this second
rule does not apply here because posterior model probabilities are not monotone (i.e., unlike
deviance, for example, the posterior probability for a particular model can be smaller than
the posterior probability of its submodels). The model selection strategy of Edwards and
Havranek (1985) is based on both these rules, while that of Havranek (1984) is based on the

first rule alone.

2.3 Occam’s Window

A crucial aspect of the strategy concerns the interpretation of the ratio of posterior model
probabilities when comparing two models. Again we appeal to Occam’s razor which we

implement as follows:

o If the log posterior odds is positive, i.e., the data provides evidence for the smaller
model, then we reject My and consider My. We could generalize this by requiring the

log posterior odds to be greater than some positive constant Og before rejecting M.

o If the log posterior odds is small and negative, providing evidence against the smaller

model which is not very strong, then we consider both models.

e If the log posterior odds is large and negative, i.e. smaller than O = —log(c¢) where

¢ is defined by equation (5), we reject My and consider M;.

Thus there are three possible actions following each comparison—see Figure 2.

Now that the various elements of the strategy are in place, we outline the search tech-
nique. The search can proceed in two directions: “Up” from each starting model by adding
links, or “Down” from each starting model by dropping links. When starting from a non-
saturated, non-empty model, we first execute the “Down” algorithm. Then we execute the
“Up” algorithm, using the models from the “Down” algorithm as a starting point. Experi-
ence to date suggests that the ordering of these operations has little impact on the final set of
models. Let A and C be subsets of model space M, where A denotes the set of “acceptable”
models and C denotes the models under consideration. For both algorithms, we begin with

A=rllrand:C-=setrof starting models.
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Inconclusive Evidence

Pr(Mo|D)
Pr(M;|D)

> log

A

i i
Or, Or
Strong Evidence for M; FEvidence for M,

Pr(Mo|D)
Pr(M;|D)

Figure 2: Occam’s Window: Interpreting the log posterior odds, log , where My is a

submodel of M;

BGMS-Down Algorithm
1. Select a model M from C
2.C—C\{M}and A — AU{M}

3. Select a submodel My of M by removing a link from M

pr(Mo|D)

4. Compute B = log ox(M1D)

5. If B> Opg then A — A\ {M} and if My ¢ C,C «— CU {My}
6. If O, < B <Opthenif My ¢ C,C — CU{My}

7. If there are more submodels of M, go to 3

8. IfC#10, gotol

BGMS-Up Algorithm

1. Select a model M from C

2.C—C\{M}and A — AU{M}

3. Select a supermodel M; of M by adding a link to M

pr(M|D)
pr(M;i|D)

4. Compute B = log

5. If B< Op then A «— A\ {M} and if My ¢C,C — CU {M;}
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6. If O, < B <Opgthenif My ¢€C,C— CU{M;}
7. If there are more supermodels of M, go to 3
8. fC#0,gotol

Upon termination, A contains the set of potentially acceptable models. Finally, we
remove all the models which satisfy equation (6), where 1 is replaced by exp(Opg), and those

models M, for which
max;{pr(M; | D)}

pr(My | D) > c. (8)

The set A now contains the acceptable models.

3 The Directed Case—Recursive Causal Model Se-
lection

3.1 Implementation

Implementation for the recursive causal models proceeds in a straightforward fashion. Con-
sider a recursive causal model for a set of random variables X,,v € V. The model is
represented by a directed graph where each variable in V' is represented by a node in the
graph. For each variable v € V' we define pa(v) to be the set of parent nodes of v, i.e. nodes
w for which there exists a directed link from w to v. The assumptions of the model imply

that the joint distribution of X,,v € V., which we denote pr(V), is given by

pr(V) = [T pr(vlpa(v)).

veV

Here, and in what follows, we are using node labels like v, to represent the random variables
which correspond to the nodes. In early implementations, pr(v|pa(v)) was assumed to be
fully specified for all v by the expert/data analyst. Spiegelhalter and Lauritzen (1990a)
introduced a parameterization for pr(v|pa(v)) whereby the relationship between a node v
and its parents pa(v) is fully specified by a vector parameter , € 0,. This leads to a

conditional distribution for V:

pr(V1]0) = H pr(v|pa(v),8,).

veV

where 6 is a general parameter with components 8,.

10
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Spiegelhalter and Lauritzen (1990a) make two key assumptions which greatly simplify
subsequent analysis. The first assumption is that of global independence whereby the pa-
rameters 4, are assumed mutually independent a priori. This assumption alone allows us to

calculate the likelihood for a single case:
/prV@d@-/Hpr (v|pa(v), 8,)pr(6,)do, —Hpr (v|pa(v))

where
(v|pa(v) /pr (v|pa(v), 8,)pr(6,)do,,.
The second assumption is that of local independence whereby the parameter 8, breaks into
components corresponding to the levels of the factors in pa(v). These components are as-
sumed to be mutually independent a priori.
Now consider a conditional probability distribution pr(v|pa(v)t,8F) = @} for a specific
set of levels, pa(v)*, of pa(v). We assume that 8] has a Dirichlet distribution DA, ..., A{]

where k is the number of levels of v. Then we can show that
pr(v = j|pa(v) —A+/ZAHJ—1 .

If we observe v to be at level z,; and the parent state to be pa(v)*, we have
010 ~ DT, o AT 4 1,0 AE].

This provides a method for sequentially calculating the required ratios of posterior model
probabilities and is simpler than the non-sequential approach. Furthermore, the sequential
approach allows for efficient incorporation of new evidence. The elicitation of the required
Dirichlet priors is feasible provided the cardinality of pa(v) is not too large. Computer-
based methods for eliciting Dirichlet prior distributions have been described by Chaloner
and Duncan (1987). If pa(v) is not observed the updating becomes more complex—see
Spiegelhalter and Lauritzen (1990a,1990b) for details. A Jeffreys prior density was used in
the examples, i.e. Af = 0.5, for i = 1,2,..., k. A uniform prior typically selects identical
models.

A considerable computational saving is obtained by noting that the sequential updating of
the distribution of 8, depends on the levels of v and pa(v) only. Therefore the likelihood for all
qualitative layers (graphs) having the same set pa(v) of parent nodes of v will have identical
contributions from v. For example, consider the two recursive causal models of Figure 3.

Whenscaleulatingsthedikelihood for the model of Figure 3(a), we store the likelihood of each

11
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(a) (b)

a

Figure 3: Simplitying the Likelihood Computations

node/parent combination separately. Now when subsequently calculating the likelihood for
the model of Figure 3(b), only the likelihood for node B requires recalculation as the sets of
parent nodes of A and ' have not changed.

To implement the model selection strategy described in Section 2 for the recursive causal
models an ordering of the nodes must be pre-specified by the expert/data analyst. If v;
precedes v; in the ordering, then a directed link from v; to v; is prohibited. In certain
applications it may be possible to search over all possible orderings but this will typically
not be the case. Pearl’s IC-algorithm (Pearl and Verma, 1991) induces directed “causal”
structures from data. An ordering of the nodes is not required, but for each pair of nodes v,
and v;, the algorithm does involve searching amongst all subsets of V' \ {v;,v;} for cutsets
between v; and v; (sets which when conditioned on, render v; and v; independent.) Cooper

and Herskovits (1992) provide a review of other approaches.

3.2 Examples
3.2.1 Coronary Heart Disease Risk Factors

Firstly we consider a data set which has been previously analysed by Edwards and Havranek
(1985). The data concerns 1,841 men cross-classified according to six coronary heart disease
risk factors. The risk factors are as follows: A, smoking; B, strenuous mental work; C,
strenuous physical work; D, systolic blood pressure; F, ratio of # and « proteins; F', family
anamnesis of coronary heart disease.

Their likelihood ratio-based model selection strategy selected two graphical log-linear
models: [AC][ADFE][BC|[BE][F] which is not decomposable and therefore is not equivalent
to any recursive causal model, and [AC E][ADFE][BC][F] which is decomposable. A striking

12
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Figure 4: Models Selected by Edwards and Havranek

Table 1: Coronary Heart Disease: Posterior Model Probabilities for Recursive Causal Models

Figure Posterior
probability %
5(a) 52
5(b) 40
5(c) 5
5(d) 4

feature of both models is the independence of F', family anamnesis. The models are shown
in Figure 4.

To implement the Bayesian graphical model selection procedure, we started from the
saturated model and used the “Down” algorithm only (starting from the empty model and
using the “Up” algorithm produced the same set of models). All qualitative structures
were assumed equally likely a priori. A natural partial ordering of the variables suggests
itself: F,(B,C), A, (E, D). The variables B, F' or C could not be “influenced” by the other
factors and must be exogenous, although the ordering of B and ' is unclear. Similarly,
D or F could hardly influence A, although the ordering of £ and D is unclear. The four
corresponding complete orderings produced strong evidence for the precedence of £ over D,
and weak evidence for the precedence of ' over B. Several further orderings were tried,
but this “natural” ordering resulted in the models with highest posterior probabilities. The
selected models are shown in Figure 5 and their posterior probabilities in Table 1.

The two most likely models are shown in Figures 5(a) and 5(b). They are rather similar
in that both contain the C'B, CA, AF, ED and AD links. The main difference between

13
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Figure 5: Coronary Heart Disease: Recursive Causal Models Selected

them lies in the way they describe the effect of strenuous mental work (B) and strenuous
physical work (C') on the ratio of 3 and « proteins (£). Model 5(a) says that C affects £
both directly and indirectly via A, whereas model 5(b) says that the effect of C' on F is solely
indirect, being mediated by B and A. There is also some uncertainty about the presence of
a link from smoking (A) to systolic blood pressure (D). The evidence favors the marginal
independence of family anamnesis of coronary heart disease (F').

The four models selected are similar to the models selected by Edwards and Havranek
(1985) and shown in Figure 4. We note that the AD link (smoking and systolic blood
pressure) is present in both of the models of Figure 4 and also in models (a) and (b) of
Figure 5, but it is absent from models (c¢) and (d) of Figure 5. In fact, the exact test for zero
partial association of A and D reported by Edwards and Havranek (1985) had a significance
level of 0.04 which was the largest of any of the links whose absence was rejected at the 5%

level.
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3.2.2 Women and Mathematics

Our second example concerns a survey which was reported in Fowlkes et al. (1988) concerning
the attitudes of New Jersey high-school students towards mathematics. The data has been
further analysed by Upton (1991). A total of 1190 students in eight schools took part in the

survey. Data on six dichotomous variables was collected:

A. Lecture Attendance; attended or did not attend;

B. Sex; female or male;

C. School Type; suburban or urban;

D. “I’ll need mathematics in my future work”; agree or disagree;
E. Subject Preference; maths/science or liberal arts;

F. Future Plans; college or job;

Upton (1991) reports that a model selection procedure based on the AIC criterion
(Akaike, 1973) selects [ABC E|[C DF|[BC D][DEF] while a procedure based on the BIC cri-
terion (Raftery, 1986a) selects the much simpler [A][BE][C E][CF|[BD][DE][DF]. Clearly
an important difference between these two models is the treatment of A.

The Bayesian graphical model selection procedure started from the empty model and
used the “Up” algorithm. It is clear that B (Sex) cannot be influenced by other variables
and must be exogenous. Initially it was also assumed that C' (School Type) was exogenous.
An exhaustive search over all consequent orderings produced the single model shown in
Figure 6.

The selected model is similar to the model selected by Upton’s BIC procedure. The
model selected by AIC clearly over-fits the data (Upton, 1991). It is of interest to note the
direction of the link from D to F'. Both Upton (1991) and Fowlkes et al. (1988) treat D as
a response variable and Upton’s path diagram shows a directed link from F' to D. However,
the data provides strong evidence that the direction of the influence is from D to F', i.e. that
students’ attitudes towards mathematics influence their future plans, rather than the other
way around. The ability of the selected model to predict is unaffected by the direction of
the £D link.

Further analysis removed the restriction that C' be exogenous. The data now provides
some support for the presence of a link from K to C although its interpretation is somewhat

unclear.

15
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Figure 6: Women and Mathematics: Recursive Causal Model Selected

4 The Undirected Case—Decomposable Model Selec-
tion

4.1 Implementation

To implement the strategy for the decomposable models, we rely heavily on a recent funda-
mental paper by Dawid and Lauritzen (1993), hereafter DL. We consider three issues which
are specific to model selection for the decomposable models.

First, how should we add and remove links whilst efficiently ensuring that all the models
created are decomposable? Here we use a result which follows from Lemma 3 of Frydenberg
and Lauritzen (1989): Let G = (V, E) be a chordal graph with vertices V' and edges E and let
G' = (V. E') be a chordal subgraph of G with exactly one edge, €, less. Then e is contained
in exactly one clique of G. Therefore, the model selection strategy must remove only links
which are members of a single clique. When adding links, the strategy must not create any
chordless four-cycles.

Second, given any two decomposable models M and M*, is it possible to generate M* from
M, adding or removing only one edge at a time but staying within the class of decomposable
models? Lemma 5 of Frydenberg and Lauritzen (1989) shows this to be the case.

Finally, how do we calculate the required posterior model probabilities? Following DL,
we consider a decomposable model M for a set of random variables X,,v € V., whose joint
distribution is specified by a vector parameter, #. 6, in turn, is determined by the clique

marginal probability tables ¢ = (0¢)cec where C denotes the set of cliques of M:

_ Hoecfclic)

M) = ToesIstis)’

1 €1,
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where § denotes the system of separators in an arbitrary perfect ordering of C, and Z denotes
the set of possible configurations of X.
For each clique C' € C, let

Ao = ()\C(iC))iCEIC

be a given table of arbitrary positive numbers and let D(A¢) denote the Dirichlet distribution
for #o with density

00|)\C H 00 . /\c ic) 7

ZCGIC
where 37, 0c(ic) = 1 and 0(i¢) > 0.
Now let us suppose that the collection of specifications D(A¢),C € C are constructed in

such a way that for any two cliques C' and D in C we have:

Ac(icnp) = Ap(icap)-

Then DL show that there exists a unique strong hyper-Markov distribution for 8 over M
that has density D(A¢) for all C € C. DL call this the hyper-Dirichlet distribution for 6.
A distribution for # is strong hyper-Markov if and only if 045, 0p)4 and 04np are mutually
independent whenever AN B is complete and separates A from B. It follows that by letting
Ao = D et Ai, the likelihood for a single case is given by:

HOeC )‘C
)‘O(HSES )‘S)

From Proposition 1 we have that updating can be carried out one clique at a time:

pr(v) =

PROPOSITION 1 [f the prior distribution L(0) is strong hyper-Markov, the posterior dis-
tribution of 0 is the unique hyper-Markov distribution L£* specified by the clique-marginal
distributions {Lf : C € C}, where L} is the posterior distribution of O¢ based on its prior
distribution Lo and the clique-specific data X = z¢.

Proof. This is Corollary 9 of DL.

The posterior distribution for o given data n¢ from the marginal table corresponding
to clique C' is D(A¢ + ne).

Consider the Bayes factor
pr(D|My)

By = ——=
"' pr(D[M))
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Figure 7: Coronary Heart Disease: Decomposable Models Selected

where My and M; are decomposable and M; is obtained from M; by deleting one edge e

linking « with v. Since both models are decomposable we have that e is contained in a single
clique, C say, of My. Let C,, = C\{v},C, = C\ {u},Co = C\ {u,v}. Then DL show that
the Bayes factor is given by:

B — pc.(De,)pe,(De,)
01 — .
pey(Dey )pe(De)

Thus, the required decomposable model comparisons can be carried out very rapidly with

calculations local to single cliques.

4.2 Examples
4.2.1 Coronary Heart Disease Risk Factors

Firstly we consider again the coronary heart disease risk factor data of Edwards and Havranek
(1985). We note that the model of Figure 4(a) which was selected by the Edwards and
Havranek procedure is not decomposable and hence will not be selected by our procedure.

The selection procedure started from the saturated model and used the “Down” algo-
rithm. All qualitative structures were assumed equally likely a priori. A standard Jeffreys
prior was adopted for 8o, C' € C. Just two models were selected and they are shown in Figure
7. Starting from the empty model and using the “Up” algorithm resulted in the same two
models. The corresponding posterior probabilities are shown in Table 2.

The model of Figure 7(a) was also selected by the directed model selection procedure and
by Edwards and Havranek (1985). The model of Figure 7(b) is essentially a decomposable
version of the directed model of Figure 5(b) and Edwards and Havranek’s model of Figure
4(a).
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Table 2: Coronary Heart Disease: Posterior Model Probabilities for Decomposable Models

Figure Model Posterior
probability %
7(a) [BC[ACE|[ADE][F] 92
7(b) | [ABC|[ABE]ADE][F| 8

“@ @@

(a)

Figure 8: Women and Mathematics: Decomposable Models Selected

Overall, the model selection exercise indicates that there is very strong evidence for the
BC, AC, AF and DF links, with evidence for the AD link that is strong but somewhat
less so. There is also some evidence for the C'FE and BF links, but it seems that one of
these alone is enough to describe the data, and it is not fully clear which one is better. Of
course the interpretation of these links is different in the two model classes. Again, as in the

directed case, there is evidence for the marginal independence of F'.

4.2.2 Women and Mathematics

We consider again the survey data previously analysed by Fowlkes et al. (1988) and Upton
(1991). We note that the models selected in Upton (1991) are not graphical and hence will
not be selected by our procedure. The procedure adopted was identical to that adopted
for the example of Section 4.2.1. The two models selected are shown in Figure 8 and the
corresponding posterior probabilities are shown in Table 3.

As in the directed case, the selected models are close to the models selected by the BIC
model selection procedure carried out by Upton (1991). However there is uncertainty about
the C'D link (School Type and “I'll need mathematics in my future work”) which is not
appatentin Upton’s.analysis. The odds in favor of the inclusion of the C'D link are 3 to 1,
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Table 3: Women and Mathematics: Posterior Model Probabilities for Decomposable Models

Figure Model Posterior
probability %
8(a) [A][BDE|[CDF] 75
8(b) | [A][BDE][DF][CF] 25

which Jeffreys (1961) would call evidence “not worth more than a bare mention”. The data

strongly supports the marginal independence of A.

4.2.3 Scrotal Swellings

Our final example concerns the diagnosis of scrotal swellings. Data on 299 patients was
gathered at the Meath Hospital, Dublin, Ireland under the supervision of Mr. Michael R.
Butler. We consider a cross-classification of the patients according to one disease class,
Hernia (H), and 7 binary indicants as follows: A, possible to get above the swelling; B,
swelling transilluminates; ', swelling separate from testes; D, positive valsalva/stand test;
E, tender; F', pain; (G, evidence of other urinary tract infections. The data is shown in Table
4. There are 28 possible links to be considered by the selection procedure in this example.
In the absence of prior expert opinion, computation times can be prohibitive. Clearly, if
the starting point for the selection procedure were close to the models for which the data
provides evidence, this problem could be overcome.

With this objective we adopted the following heuristic procedure. First, Bayes factors for
each of the 28 links are calculated by comparing the saturated model with the 28 sub-models
generated by removing single links. The model consisting of the links for which the data
provides evidence in this manner is then used as a starting point for the selection procedure.
If this model is not decomposable, some of the links may be removed or additional ones may
be added. A similar approach was suggested by Goodman (1973). The starting model is
shown in Figure 9.

Now the “Up” algorithm is executed, followed by the “Down” algorithm (or vice versa).
Note that if the starting links are badly chosen, the complete procedure has the opportunity
to remove them, although, in this example, the final model contains all the links from the
starting model. Two models were selected by this procedure and they are shown in Figure
10. The corresponding posterior probabilities are shown in Table 5.

The result of primary.interest here is the importance of A (possible to get above swelling)
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Table 4: Scrotal Swelling data

Indicants

Hermia A B C D F F G Count

1
16
3
51

N NN NY Y N
Y N N N N N N
Y N N N N Y N
Y N N N Y Y N
Y N N N Y Y Y
Y N Y N N N N
Y N Y N N N Y
Y N Y N N Y N
Y N Y N Y N N
Y N Y N Y Y N
Y N Y N Y Y Y
Y N Y Y N N N
Y N Y Y N Y N
Y Y N N N N N
Y Y N N N N Y
Y Y N N N Y N
Y Y N N Y Y N
Y Y Y N N N N
Y Y Y N Y Y N
N NY Y N NN
N NY Y N Y N
Y N Y Y N N N

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y

Figure 9: Starting Model for Scrotal Swelling Example
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3
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Figure 10: Scrotal Swellings: Decomposable Models Selected

Table 5: Scrotal Swellings: Posterior Model Probabilities for Decomposable Models

Figure Model Posterior
probability %
8(a) | [AH][DH]|[BDE]CDE|EF|EG] 75
8(b) [AH|[DH|[BDFE|[CD][EF|[EG] 25
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and D (valsalva/stand test) with respect to Hernia diagnosis. Both indicants can be estab-
lished through simple procedures at physical examination. The only real model uncertainty
which is exhibited concerns the relationship between C' (swelling separate from testes) and
FE (tender). The odds in favor of the inclusion of the C'E link are 3 to 1 (evidence not
worth more than a bare mention). Analysis of further cross-classifications extracted from

this database also yield similarly sparse models.

5 Performance

Following Dawid (1984), we contend that one of the primary purposes of statistical analysis
is to make forecasts for the future. Therefore, one way we can judge the efficacy of a model
selection strategy, is to measure how well the resulting models predict future observations.
In the case of Occam’s Window, our specific objective is to compare the quality of the
predictions based on model averaging against those based on any single model that an
analyst might reasonably have selected.

We examined the predictive performance for each of the examples considered previously
as follows: we randomly split the complete data sets into two subsets. One subset, D,
containing 25% of the data, was used to select models, while DT = D\ D?, was used as a
set of test cases. We measured performance by the logarithmic scoring rule of Good (1952).
Specifically, we measured the predictive ability of an individual model, M, with:

— > logpr(d | M, D).
deDT

We measured the predictive performance of model averaging with:

— > log{ > pr(d | M, D%)pr(M | D7)},

deDT MeA

where A is the set of selected models.

We present results in Tables 6, 7 and 8 for each of the undirected examples of Section 4.
In each case, we give the models selected and the performance measure (up to a normalising
constant) for each individual model and for model averaging. For the Coronary Heart Disease
example, we also include the score for the model selected by Whittaker (1990) on the basis
of the full data set. The models selected by Upton (1991) and Fowlkes et al. (1988) are not
included because they are not decomposable.

In each case, the method that averages over the models selected provides predictive

performanceswhichusssuperior to the performance resulting from basing the inference on any
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Table 6: Coronary Heart Disease: Predictive Performance

Model Posterior | Logarithmic
probability % Score
[AE][BC][BE|[DE][F] 26 4984.4
[AC|[BC][BE][DE][F] 16 4990.2
[AC|[AE][BC]|[DE|[F] 13 4992.2
[A][BC]|[BE][DE][F] 9 4990.1
[AE][BC][BE|[D][F] 8 4981.7
[AE][BCI][DE][F] 7 4983.7
[AC][BC][BE|[D][F] 5 4981.6
[AC][BC][DE][F] 4 4989.5
[AC)[AE][BC][D][F] 4 4987.4
[A][BC][BE][D][F] 3 4989.4
[A][BCI[DE|[F] 2 4981.0
[AE][BC][D][F] 2 4980.9
[AC][BC][D][E][F] 1 4986.7
[ABCE|[ADE][BF] Whittaker 4984.8
Model Averaging 4953.6

Table 7: Women and Mathematics: Predictive Performance

Model Posterior | Logarithmic
probability % Score
[A][B][C DF|[DFE] 75 3318.9
[A][B][CF|[DE][DF] 21 3317.3
[A][B][CF]|[DFE] 4 3320.4
Model Averaging 3313.9
24
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Table 8: Scrotal Swellings: Predictive Performance

Model Posterior | Logarithmic
probability % Score
[AH|[AD][BDE]|C D] EF][FG] 3 605.3
[AH|[DH|[BDE][CD][EF|[FG] 3 599.6
[AH|[DH|[BDE|CDE|[EF|[FG] 5 600.6
[AH|[AD][BDE]|CDE]EF][FG] 5 606.3
[AH|[AD][BDE]|CD|[EF][EG] 15 603.4
[AH|[DH|[BDFE|[CD][EF|[EG] 15 597.7
[AH|[DH|[BDE|CDE|[EF|[EG] 27 598.7
[AH|[AD][BDE]CDE]EF|[EG] 27 604.4
Model Averaging 594.2

single model which might reasonably have been selected. In the coronary heart disease data,
for example, our model averaging method outperforms the “best” model (i.e. that with the
highest posterior probability) by 31 points of log predictive probability, or 62 points on the
scale of twice the log probability on which deviances are measured. Repeating the random
split or varying the subset proportions produces very similar performance results.

We also carried out a ROC (receiver operating characteristic) analysis for each of the
examples. In Figure 11 we show two ROC curves for the variable E. ratio of § and «
proteins, in the coronary heart disease example. The solid ROC curve shows how well the
single model with the highest posterior probability predicts variable F while the dashed
curve shows the performance achieved by averaging over the selected models. Again we used
25% of the data to select models and the remainder for testing.

These ROC curves show the false-positive and true-positive proportions for different
probability thresholds for variable £. The area above the curve in the unit square provides
a measure of predictive ability. Model averaging provides substantially better predictive
performance in this instance. The area above the curve is 0.08 for model averaging, and 0.22
for the best single model. Thus model averaging reduces the average False Positive rate for
a given True Positive rate by about two-thirds, where the False Positive rates are averaged
over all True Positive rates. Model averaging is not guaranteed to provide superior predictive

performance for each variable although the situation in Figure 11 is typical.
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Figure 11: Coronary Heart Disease: ROC Curves for Node I
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6 Discussion

6.1 General Comments and Other Approaches

We have outlined an overall strategy for model selection and accounting for model uncertainty
in two important classes of models for high-dimensional contingency tables. This involves a
redefinition of the Bayesian model uncertainty formalism, an efficient way of computing exact
Bayes factors that exploits the graphical structure, and an algorithm for quickly searching
through the very large model classes involved. The resulting procedure is quite efficient:
for the example of Section 4.2.1, approximately 3,000 model comparisons per minute can be
carried out on a Sun IPC.

There is a considerable literature on model selection for multidimensional contingency
tables; this is generally concerned with the selection of a single “best” model. Most of it is
based on the asymptotic properties of goodness-of-fit statistics (Goodman (1973), Wermuth
(1976), Havranek (1984), Whittaker (1984), Edwards and Havranek (1985) or Fowlkes et al.
(1988)). There are also approaches based on information criteria and discrepancy measures
(Gokhale and Kullback, 1978; Sakamoto, 1984; Linhart and Zucchini, 1986). A recent review
is provided by Upton (1991) who advocates the use of the BIC statistic. The calculation of
Bayes factors for contingency table models has been considered by Spiegelhalter and Smith
(1982), Raftery (1986a, 1988, 1993), Spiegelhalter and Lauritzen (1990a) and Spiegelhalter
and Cowell (1991).

Pearl and Verma (1991) and Glymour et al. (1987) have proposed strategies for recovering
causal structure from data. While these authors’” objectives differ from ours, their procedures
for selecting directed graphical structures have much in common with our recursive causal
model selection strategy.

Cooper and Herskovits (1992) and Anderson et al. (1991) have examined model selection
in the context of probabilistic expert systems. In both cases, the examples are based solely
on data analysis and the incorporation of prior expert opinion is not considered. Cooper
and Herskovits (1992) describe a general theory involving averaging over all models and
suggest possible approximations. Their K2 strategy which seeks out the “best” recursive
causal model for the qualitative layer, where “best” is taken to mean the single model with
maximum probability. The algorithm starts with a model with no links and at each stage
adds the directed link which most increases the model probability. The user must pre-specify
an ordering of the nodes. Anderson et al. (1991) carry out their search in the undirected

graphical model framework using a method introduced by Kreiner (1987). The difficulties
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with large sparse tables mentioned above are avoided by using exact tests when comparing

models.

6.2 Model Priors

In the examples considered above, the prior model probabilities pr(M) were assumed equal
(Cooper and Herskovits, 1992, also assume that models are equally likely a priori). In
general this can be unrealistic and may also be expensive and we will want to penalise the
search strategy as it moves further away from the model(s) provided by the expert(s)/data
analyst(s). Ideally one would elicit prior probabilities for all possible qualitative structures
from the expert but this will be feasible only in trivial cases.

For models with fewer than 15 to 20 nodes, prior model probabilities may be approxi-
mated by eliciting prior probabilities for the presence of every possible link and assuming
that the links are mutually independent, as follows. Let £ = Ep U €4 denote the set of all
possible links for the nodes of model M, where £p denotes the set of links which are present
in model M and &4 denotes the absent links. For every link e € £ we elicit pr(e), the prior
probability that link e is included in M. The prior model probability is then approximated
by

x TT pr(e) T (1~ pre)).

eEEp e€€A
Prior link probabilities from multiple experts are treated as independent sources of informa-
tion and are simply multiplied together to give pooled prior model probabilities. Clearly,
the contribution from each expert/data analyst could be weighted.

For applications involving a larger number of nodes or where the elicitation of link prob-
abilities 1s not possible, we could assume that the “evidence” in favour of each link included
by the expert(s)/data analyst(s) in the elicited qualitative structure(s) is “substantial” or
“strong” but not “very strong” or “decisive” (Jeffreys, 1961). For example, we could as-
sume that the evidence in favour of an included link lies at the center of Occam’s window
corresponding to a prior link probability for all ¢ € Ep of

1

pr(e) = 1—|—exp(0 0.+0x )

Similarly, the prior link probabilities for e € £4 are given by

eXp(OL+OR)

14 exp( OL+OR)

pr(e) =

28

www.manaraa.com



In the directed case it may be possible to construct a prior distribution on the space of

orderings—see Critchlow (1985) for further discussion.

6.3 Remaining Issues

While we believe that the methods we propose provide a workable approach to qualita-
tive updating in expert systems, some issues remain. Spiegelhalter and Lauritzen (1990a)
and other authors have expressed concerns about automatically updating the qualitative
structure without reference to the domain expert. Such concerns need to be addressed in
the context of real expert systems. Extension of the methods to include the more general
graphical models of Wermuth and Lauritzen (1990) and Edwards (1990) will also be impor-
tant. Missing data will frequently be a problem and we are currently exploring a number of
techniques for the incorporation of missing data in the model selection strategy.

In the examples we have used vague priors for the model parameters that do not incor-
porate specific prior information. However, in expert system applications there will often
be substantial prior information, and taking account of it would be expected to improve
performance. How to elicit the required Dirichlet prior distributions is therefore a major
issue. Direct elicitation is typically intractable; this has been a barrier to the use of the DL
approach.

Madigan and Raftery (1991) outlined a simple approach to the elicitation of the required
priors. They regarded the parameters of the Dirichlet prior distribution as “equivalent prior
samples”, which are elicited subject to constraints that ensure consistency. The priors are

elicited sequentially in a way that avoids the need to store the full “equivalent prior” table.
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